GECS SCHEME

USN

1

2

18CS71

galuru-Seventh Semester B.E. Degree Examination, July/August 2022 **Artificial Intelligence and Machine Learning**

Time: 3 hrs.

Max. Marks: 100

LIBRAR

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

(10 Marks) What is Artificial Intelligence? Discuss the branches of Artificial Intelligence. a. What is a state space? Explain the concept of state space representation using the water jug b. (10 Marks) problem

OR

- (10 Marks) Explain any two Al techniques for solving tie-tar-toe problem. a.
 - Write the algorithms for breadth first search and depth-first search. Enlist the advantages of b. (10 Marks) each.

Module-2

- (04 Marks) 3 Explain the properties of a good knowledge representation system. a.
 - Define the following terms W.A.F machine learning : (i) Concept learning (ii) Inductive b. learning hypothesis (iii) Consistent hypothesis (iv) Version space (v) General Boundary (06 Marks) (vi) Specific boundary.
 - Apply candidate elimination algorithm on the following data set to obtain the complete C. version space.

Example	Sky	Air Temp	Humidity	Wind	Water	Forest	Enjoy
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	NO
4	Sunny	Warm	High	Strong	Cool	Change	Yes

(10 Marks)

OR

Explain the use of predicate logic as a way of representing knowledge using the following 4 a. sentences :

i)	Marcus was a man.	v)	All Romans were either loyal to		
1)			Caesar or hated him		
ii)	Marcus was a Pompeian.	vi)	Everyone is loyal to someone.		
	All Pompeian were Romans	vii)	People only try to assassinate rulers they are not loyal to.		
iv)	Caesar was a ruler.	viii)	Marcus tried to assassinate Caesar.		

(10 Marks)

(10 Marks)

Write Find-S algorithm. Apply the same on the following data set for the target "Play Tennis".

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2		Mild	High	Weak	Yes
3	Overcast		Normal	Weak	Yes
4	Overcast			Weak	Yes
5	Overcast	Cool	Normal	weak	res

Module-3

- Define the following : (i) Decision tree (ii) Entropy (iii) Information gain 5 a. (iv) Restriction Bias (v) Preference Bias (05 Marks) (05 Marks)
 - Write ID3 algorithm to construct decision tree. b.

18CS71

Construct a decision tree for the following data set to find whether a seed is poisonous or not.

E 1	0.1	Thenoce	1110	set to find whether a bet		
Example	Colour		Fungus	Appearance	Poisonous	
1	Green	Soft	Yes	Wrinkled	Yes	
2	Green	Hard	Yes	Smooth	No	
3	Brown	Soft	No	Wrinkled	No	
4	Brown	Soft	Yes	Wrinkled	Yes	
5	Green	Soft	Yes			
6	Green	Hard	No	Smooth	Yes	
7	Orange	Soft	Yes	Wrinkled	No	
/	Orange	501	res	Wrinkled	Yes	

OR

- Design a perceptron that implements AND function. Why is that a single layer perceptron 6 a. cannot be used to represent XOR function? (05 Marks)
 - Derive an equation for gradient descent rule to minimize the error. b.
 - (05 Marks) Write an algorithm for back propagation algorithm which uses stochastic gradient descent С. method. Comment on the effect of adding momentum to the network. (10 Marks)

Module-4

- a. Define Maximum Likelihood (ML) hypothesis. Derive an equation for ML hypothesis using Bayes theorem. (05 Marks)
 - A patient takes a lab test and the result comes back positive. It is known that the test returns b. – a correct positive result in only 99% of the cases and a correct negative result in only 98% of the cases. Furthermore, only 0.08 of the entire population has this disease.
 - What is the probability that this patient has Cancer? (i)
 - What is the probability that he does not have Cancer? (ii)

Write EM algorithm and explain. С.

OR

- Write Brute-force Maximum A Posterion (MAP) learning algorithm. 8 a. b.
 - Describe the features of Bayesian learning methods.
 - Estimate conditional probabilities of each attributes {Colour, Legs, Height, Smelly} for the (05 Marks) С. species classes : {M, H} using the data given in the table. Using those probabilities estimate the probability values for the new instance - {Colour = Green, Legs = 2, Height = Tall and Smelly = NO

7

Example	Colour	Legs	Height	Smelly	Species
1	White	3	Short	Yes	M
2	Green	2	Tall	No	M
3	Green	3	Short	Yes	M
4	White	3	Short	Yes	M
5	Green	2	Short	No	H
6	White	2	Tall	No	H
7	White	2	Tall	No	H
8	White	2	Short	Yes	H

Module-5

(10 Marks)

(10 Marks)

- Write K-Nearest neighbor algorithm for approximation of a discrete-valued target function 9 a. and also for a real valued target function. (10 Marks)
 - Explain CADET system using case based reasoning. b.

OR

- What is reinforcement learning? Explain the concepts of reinforcement learning problem 10 a. and its characteristics. (10 Marks)
 - Derive an expression for a function. Using the same, write an algorithm for learning. b.

* * * 2 of 2 * * *

(10 Marks)

(10 Marks)

(05 Marks) (10 Marks)

(05 Marks)